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estimate' for T was obtained by substituting Zachariasen's 
approximation for D in (5). 

The diffracted- and transmitted-beam rocking curves 
presented in Figs. 1 and 2 show that the present expressions 
based on (2) lead to much smoother behaviour than those 
based on Zachariasen's approximation for D. Furthermore, 
the expected complementary behaviour of T and R is ex- 
hibited by the present results but is not exhibited by those 
based on Zachariasen's approximation. 

It may be noted that Zachariasen's approximation is valid 
for all the cases illustrated in his book, but it is not necessarily 
valid for all cases, whereas (2) will always be correct 
within the framework of Zachariasen's explicit assumptions. 
Moreover, there does not appear to be any good reason for 
making Zachariasen's approximation, since D given by (2) 
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Fig. 1. Reflectivity (R) and transmissivity (T) rocking curves for a 
centrosymmetric crystal in the symmetric Bragg case (,8 = 0) 
plotted against the rocking angle y [defined in equation (3.181) 
of Zachariasen] for A = 0-5, g = --0.1 and x = +0.1. The solid 
curves are the solutions given by equations (1) and (2), while the 
broken curves were obtained by taking Zachariasen's approxi- 
mation for D. 
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Fig. 2. As for Fig. 1 but with equations evaluated for asymmetric 

Bragg case (fl = +0.8) and A = 1.5, g(0) = --0.1 [g(fl) = 
g(0)/(1 - fl2)V2l and x = +0. I. 

is just as easy to evaluate as D in Zachariasen's approxi- 
mation. 

In conclusion, we note that the precise form of thin-crystal 
rocking curves is currently of practical interest. For example, 
Kohra (1972) and his group have measured (virtually 
intrinsic) thin-crystal rocking curves for Si. 
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Application of the matrix intensity equation of X-ray diffraction is discussed for the second problem of extrinsic faults in 
face-centred cubic crystals, discussed by Howard [Acta Cryst. (1977), A33, 29-32]. The second problem is generalized 
to the case that the probability with which inserted layers follow layers of the original crystal differs from that with which 
inserted layers follow previously inserted layers. The Q matrix for the case is obtained and the results of intensity 
calculation are shown. 

Recently, Howard (1977) solved the second problem of 
extrinsic faults in face-centred cubic crystals by the use of the 
difference equation. We can obtain the same results by 
application of the matrix intensity equation of X-ray 
diffraction. Application of the matrix intensity equation to 
growth, growth and deformation, and multiple-deformation 
faults in various close-packed structures was discussed by 
the present author (Takahashi, 1976). Extrinsic faults in 
f.c.c, crystals are equivalent to double-deformation faults. 
Our Q matrix is different from that of Kakinoki & Komura 

(1965). As is well known, the P matrix is a transition 
probability matrix of the Markov process. The original 
definition of the P matrix by Kakinoki & Komura (1965) is 
that the / j  element of the P matrix is the probability of finding 
the layer j after the layer i. That is to say, states are defined 
by kinds of layers in their treatment. States and transition 
probabilities are called complexions and continuing prob- 
abilities, respectively, in this article. Complexions can be de- 
fined by sequences of layers or displacement vectors in the 
matrix intensity equation. If the ith complexion is followed 



S H O R T  C O M M U N I C A T I O N S  345 

by the j th  complexion, the vector directed from the origin of 
the last layer of the ith complexion to that of the j th is 
denoted by tj = dj + % where dj is the parallel component 
and ej is the normal component to the layer planes, and the 
j th  element of our diagonal matrix • becomes e i = 
exp {-2ni[(s - %)/2] tj}. We can choose the origin of the 
layers in order that thej th element ej does not depend on any 
preceding complexion. Then, our Q matrix is expressed by 
P~, that is, the j th  column of the Q matrix is thej th  column 
of the P matrix multiplied by ej. The diffracted intensity can 
be calculated if we know the coefficients of the characteristic 
equation of the Q matrix by the method described by 
Kakinoki & Komura (1965). From a practical point of view, 
it is not necessary to derive the characteristic equation of the 
Q matrix, since we can calculate the coefficients from the Q 
matrix by Newton's formula on an electronic computer. 

For multiple-deformation faults, complexions are defined 
by the displacement vectors, d~ = ]a + ]b and d 2 = ]a + ]b, 
the positions of the displacement vectors in the sequence of 
the displacement vectors which indicates the sequence of 
layers in fault-free structures, and the values of continuing 
probabilities Po" Since the vector sequence of f.c.c, crystals is 
dldld I . . .  or d2d2d 2 . . . .  any position is equivalent to any 
other, so that the complexions are distinguished by the 
displacement vectors and by the continuing probabilities. We 
denote complexions which follow preceding ones with proba- 
bility (1 - p )  by d~ and d 2 and those which follow preceding 
ones with probability p by dl and d~, where the probability 
that any layer is followed by an inserted layer is denoted by 
p. We obtain the following sequences of the complexions 
from Fig. 1 of Howard (1977). Complexion d, is followed by 
d I and d~, d[ is followed by d 2 and d~, d 2 is followed by d~ 
and d[, and d~ is followed by d~ and d~. When we number the 
complexions as follows, 

ence equation and of matrix intensity equation become equal 
to each other. If we multiply (4) by X - ptle2 - (1 - p) e~ 
and put ~ = 0, we obtain the same equation as (12) of 
Howard (1977). 

Our method can be easily developed to the case where 
inserted layers are followed by another inserted layer with 
probability p '  different from p. We denote complexions 
which follow with probability 1 - p'  by di' and d~' and those 
which follow with probability p '  by --xa"' and d~". The proba- 
bility tree for this case is shown in Fig. 1. When the 
complexions are numbered as follows, 

d , = l ,  d~=2, d~'=3, 

d] t = 4, ~la'"=5' d ~ ' = 6 ,  
(5) 
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Fig. 1. Probability tree forQ matrix given by (6). 

d , = l ,  d , = 2 ,  d I = 3 ,  d~=4,  (1) 

the elements of the P matrix become 

P I I  = P 2 I  : P31  = P42  : (1 --p), 
(2) 

Pl4 = P24 = P34  = P43 : P ,  

and the other 
matrix are: 

elements are zero. Hence, the elements of the Q 

Ql1 = Q2, = Q3, = (1 - p ) e :  

Q42:  (1 - p)t2; 

Q43 = pex; 

Q14 = Q24  = Q34 =pc2; 

(3) 

where e 1 = exp [-2ni(2h + k)/3 - ¢pi], e 2 = exp [ - 2 ~  (h + 
2k)/3 - ~0i], ~p = 2n[(s - %)/2] ¢ and the other elements are 
zero. The characteristic equation of the Q matrix is given by 

X2[Z 2 - (1 - p ) t l X - p [ p t : 2  + (1 - p )  e221 = 0. (4) 

As seen from the derivation of diffracted intensity by 
Kakinoki & Komura (1965), if both the characteristic 
equation of the difference equation and of the Q matrix multi- 
plied by exp (¢P0 are substantially equivalent to each other, 
the diffracted intensities calculated by the use of the differ- 
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Fig. 2. Intensity profiles. Full line: p = p'. Broken line: p' = 0. 
Chain line: 1 - p' = ½(1 - p). 
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the elements of the Q matrix become: 

Qll = 031 = Q41 = (1 --p)el; 

Q12 = Q32 = Q42 -Pt;2;  

Q23 = Q63--- (1 - p ' ) t ~ 2 ;  

Q54 = (1 - p')el; (6) 

Q25 = Q65 = p'el; 

Q56 = P'•2, 

and the other elements are zero. The calculation of dif- 
fracted intensities with an electronic computer was pro- 
grammed for the Q matrix given by (6). The Q matrix 
reduces to that of the first problem if p '  = 0, and to that of 

the second problem if p = p'. The calculated intensity pro- 
files are shown in Fig. 2. 

The author wishes to express his sincere thanks to Mr T. 
Kakuta of Institute of Earth Sciences, Faculty of Science, 
and to Mr H. Ushijima of Electronic Computer Room of 
Kagoshima University for their kind help in programming 
this calculation. 
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5 ,  fl a n d  ), forms ofp-dichlorobenzene: calculation of crystal structure and potential e n e r g y .  By K. MIRSKY 

and M. D. COHEN, Department of Structural Chemistry, The Weizmann Institute of Science, Rehovot, Israel 

(Received 16 August 1977; accepted 21 November 1977) 

A new potential function for non-bonded a tom. . .a tom interactions of chlorine atoms has been used to calculate 
equilibrium crystal structures and potential energies of the three polymorphs of solid p-dichlorobenzene. 

There has been considerable interest in potential functions 
describing non-bonded a t o m . . . a t o m  interactions of CI 
atoms. Recently, we have introduced (Mirsky & Cohen, 
1977) a new CI. . .C1 potential function: this is of Buc- 
kingham form, ~0 = - Ar  -6 + B exp ( - a r ) ,  with A = 2980 
Kcal mo1-1, B = 4580 Kcal mo1-1, and tt = 2.262 A -1. 
Compared with other available potentials this has a large 
value (4.2 A) of r 0, the minimum-energy interatomic 
distance, and is soft (the steepness parameter 2 = ttr 0 = 9.5). 
This function was successfully used for calculating the 
crystal structure parameters and lattice energies of  a number 

of  chloroaromatics, without additional terms to allow for 
electrostatic interactions. 

One of the substances for which these calculations were 
performed was the y form of p-dichlorobenzene (DCB). 
There are by now considerable structural data available on 
the three polymorphs of this compound. There have been 
studies at various temperatures of the monoclinic a phase 
[space group P21/a, Z = 2 (Reynolds, Kjems & White, 
1974; Wheeler & Colson, 1976; and references therein)], of  
the triclinic ,8 phase [space group P1, Z = 1 (Reynolds et al., 
1974; Wheeler & Colson, 1976; and references therein)], and 

Tab le  1. fl, a and ~ phases of  DCB: comparison o f  the calculated equilibrium unit-cell parameters with those 
extrapolated to 0 K 

Polymorph 

fl a y 

Unit-cell theory theory o 
parameter* Calculated 0 K % experiment Calculated 0 K ~ experiment Calculated 0 K 

a (A) 7.32 7.29 0.4 14.65 14.64 0 8.57 8.60 
b (A) 5.75 5.85 -1 .7  5.63 5.72 -1 .6  5.98 6.00 
c (A) 3.74 3.86 -3 .2  3.83 3.90 -1 .8  7.32 7.39 
a (o)i- 91.8 90.9 0.9 90.0 90.0 90.0 90.0 
fl(o) 109.7 112.4 -2 .4  109.8 111.6 -1 .6  127.3 127.5 
~, (o)~. 94.1 92.7 1.5 90.0 90.0 90.0 90.0 
Vmo ~ (A 3) 147.9 151"9 --2.7 148"5 151.8 --2.2 149.2 151"3 

theory % ~  
experiment 

- 0 . 4  
-0 .3  
- 1 . 0  

- 0 . 2  

-1.4 

* The 0 K values for the fl and n forms are found by extrapolation; those for the ), form are estimated with contractions of about 
0.02 A assumed in all cell dimensions between 100 and 0 K, as is found for fl and a forms. 

~" For monoclinic space groups, only the monoclinic angle was varied. 


